人文地理
 
  联系我们 | 在线留言 | 注册 | 遗忘密码?
  读者在线:
  用户名   密码   登录
2025年7月10日 星期四  首页 期刊介绍 编委会 作者中心 审稿中心 在线期刊 | 期刊订阅 | 下载中心 | 广告合作 友情链接 | 联系我们
人文地理  2015, Vol. 30 Issue (4): 116-122    DOI: 10.13959/j.issn.1003-2398.2015.04.018
交通 最新目录| 下期目录| 过刊浏览| 高级检索 |
中国城市间交通流强度的空间格局
陈伟1, 修春亮1, 陈金星2, 王女英1, 魏冶1
1. 东北师范大学 地理科学学院, 长春 130024;
2. 中国科学院 遥感与数字地球研究所, 北京 100094
SPATIAL PATTERN OF TRAFFIC FLOW INTENSITY AMONG CITIES IN CHINA
CHEN Wei1, XIU Chun-liang1, CHEN Jin-xing2, WANG Nv-ying1, WEI Ye1
1. School of Geographical Sciences, Northeast Normal University, Changchun 130024, China;
2. Institute of Remote Sensing and Digital Earth Chinese, Academy of Sciences, Beijing 100094, China

全文: PDF (7218 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 以全国321个地级以上行政区为研究对象,基于城市间汽车、火车和航空班次联系测算各城市对外联系强度,通过核密度估计、位序-规模及探索性空间数据分析,对多元交通流视角下城市间交通流强度的空间格局进行提取和解析。研究表明:在整个城市体系中,高位次城市规模凸显,中小规模城市有待于进一步发育。基于公路和铁路联系的城际交通流分别表现为由沿海向内陆逐级减弱、以国家铁路大动脉沿线为中心的核心-边缘结构;基于航空联系的城际交通流表现出高度极化和点状镶嵌特征。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 交通流城际联系空间格局核密度估计ESDA    
Abstract:This paper aims to reveal the spatial pattern of urban external connection intensity from the respective of traffic flow. Previous urban studies on traffic flow laid more emphasis on single type of traffic flow while multi-flow synthesis was not taken into account. Moreover, the scale of prefecture-level city was not be covered before. Therefore, a further analysis on spatial pattern of multi-type traffic intensity between cities in China is required. To detail and comprehensively consider the spatial pattern of cities in China, we narrow the study scale to prefecture-level city. According to the list of prefecture-level divisions of China, this paper firstly takes 321 cities as basic study units. Data crawling was implemented under the C# language environment, which collects the runs number of three transport modes as basic data. Then we measure external connection index of each city respectively through bus, railway and flight schedules. In the following analysis, kernel density estimation was employed to describe spatial distribution pattern of urban external connection intensity, which implies a concentration trend. The number of runs shows bus > train > flight. Furthermore, Rank-size Rule was applied to portrait distribution variations of urban external connection intensity, among them flight schedules show significant rank-size feature, while train schedules come last. From the perspective of the whole urban system, the distribution of urban size is concentrated. Specifically, top-ranking cities have considerable scales, while small and medium-size cities need further development. After that, we use ESDA (Exploratory Spatial Data Analysis) to examine the spatial agglomeration. There is apparently positive spatial correlation between urban external connection index based on bus schedules data and that based on train schedules data. Spatially, a gradually weakening trend appears from coastal to inland. At the same time, core-periphery structure can be recognized, which identifies the national railway artery as core area and areas along the railway as periphery.
Key wordstraffic flow    intercity connectivity    spatial pattern    kernel density estimation    ESDA   
收稿日期: 2014-06-23     
基金资助:

国家自然科学基金项目(41071109,41401172)

通讯作者: 修春亮(1964-),教授,博士生导师,研究方向为城市地理、城市与区域规划。E-mail:xiucl@nenu.edu.cn。     E-mail: xiucl@nenu.edu.cn
作者简介: 陈伟(1989-),男,安徽淮南人,硕士研究生,主要研究方向为经济地理与区域发展。E-mail:geochw@163.com。
引用本文:   
陈伟, 修春亮, 陈金星, 王女英, 魏冶. 中国城市间交通流强度的空间格局[J]. 人文地理, 2015, 30(4): 116-122. CHEN Wei, XIU Chun-liang, CHEN Jin-xing, WANG Nv-ying, WEI Ye. SPATIAL PATTERN OF TRAFFIC FLOW INTENSITY AMONG CITIES IN CHINA. HUMAN GEOGRAPHY, 2015, 30(4): 116-122.
链接本文:  
http://rwdl.xisu.edu.cn/CN/10.13959/j.issn.1003-2398.2015.04.018      或     http://rwdl.xisu.edu.cn/CN/Y2015/V30/I4/116
2011 © 人文地理编辑部 版权所有
技术支持: 北京玛格泰克科技发展有限公司